Autophagy Inhibition in BRAF-Driven Cancers

Cancers (Basel). 2021 Jul 13;13(14):3498. doi: 10.3390/cancers13143498.

Abstract

Several BRAF-driven cancers, including advanced BRAFV600E/K-driven melanoma, non-small-cell lung carcinoma, and thyroid cancer, are currently treated using first-line inhibitor combinations of BRAFV600E plus MEK1/2. However, despite the success of this vertical inhibition strategy, the durability of patient response is often limited by the phenomenon of primary or acquired drug resistance. It has recently been shown that autophagy, a conserved cellular recycling process, is increased in BRAF-driven melanoma upon inhibition of BRAFV600E signaling. Autophagy is believed to promote tumor progression of established tumors and also to protect cancer cells from the cytotoxic effects of chemotherapy. To this end, BRAF inhibitor (BRAFi)-resistant cells often display increased autophagy compared to responsive lines. Several mechanisms have been proposed for BRAFi-induced autophagy, such as activation of the endoplasmic reticulum (ER) stress gatekeeper GRP78, AMP-activated protein kinase, and transcriptional regulation of the autophagy regulating transcription factors TFEB and TFE3 via ERK1/2 or mTOR inhibition. This review describes the relationship between BRAF-targeted therapy and autophagy regulation, and discusses possible future treatment strategies of combined inhibition of oncogenic signaling plus autophagy for BRAF-driven cancers.

Keywords: BRAF; MEK1/2; autophagy; drug resistance; metabolism; targeted therapy.

Publication types

  • Review