Higher-Order Fabry-Pérot Interferometer from Topological Hinge States

Phys Rev Lett. 2021 Jul 9;127(2):026803. doi: 10.1103/PhysRevLett.127.026803.

Abstract

We propose an intrinsic three-dimensional Fabry-Pérot type interferometer, coined "higher-order interferometer," that is based on the chiral hinge states of second-order topological insulators and cannot be mapped to an equivalent two-dimensional setting because of higher-order topological obstructions. Quantum interference patterns in the two-terminal conductance of this interferometer are controllable not only by tuning the strength but also, particularly, by rotating the direction of the magnetic field applied perpendicularly to the transport direction. Remarkably, the conductance exhibits a characteristic beating pattern with multiple frequencies depending on the field strength and direction in a unique fashion. Our novel interferometer thus provides feasible and robust magnetotransport signatures for hinge states of higher-order topological insulators.