Unravelling the nature of a toluene-fumaronitrile complex

Phys Chem Chem Phys. 2021 Aug 4;23(30):16128-16141. doi: 10.1039/d1cp01895g.

Abstract

In this research, the occurrence and anomalous increase of an additional absorption band observed in the spectrum of fumaronitrile dissolved in toluene are explained and characterized. The formation of a stable ground-state complex between these two molecules is evidenced by both experimental and theoretical studies. TD-DFT calculations show that the presence of an unexpected signal in the absorption spectra originates from the photoinduced intermolecular charge-transfer process occurring within this system. The mechanism and the efficiency of the adduct formation were investigated using both spectral measurements (UV-Vis, IR) and quantum-mechanical calculations (DFT). The influence of the solvent polarity on the complex stability was also evaluated. Since the forces responsible for the adduct formation turn out to be of a rather weak, dispersive character, the related equilibrium stability constant is relatively low and becomes even lower with the increase in solvent polarity. Finally, the system was analyzed for the expected fluorescence emission of the resulting complex, but none was observed.