Modulation of Individual Alpha Frequency with tACS shifts Time Perception

Cereb Cortex Commun. 2020 Sep 8;1(1):tgaa064. doi: 10.1093/texcom/tgaa064. eCollection 2020.

Abstract

Previous studies have linked brain oscillation and timing, with evidence suggesting that alpha oscillations (10 Hz) may serve as a "sample rate" for the visual system. However, direct manipulation of alpha oscillations and time perception has not yet been demonstrated. To test this, we had 18 human subjects perform a time generalization task with visual stimuli. Additionally, we had previously recorded resting-state EEG from each subject and calculated their individual alpha frequency (IAF), estimated as the peak frequency from the mean spectrum over posterior electrodes between 8 and 13 Hz. Participants first learned a standard interval (600 ms) and were then required to judge if a new set of temporal intervals were equal or different compared with that standard. After learning the standard, participants performed this task while receiving occipital transcranial Alternating Current Stimulation (tACS). Crucially, for each subject, tACS was administered at their IAF or at off-peak alpha frequencies (IAF ± 2 Hz). Results demonstrated a linear shift in the psychometric function indicating a modification of perceived duration, such that progressively "faster" alpha stimulation led to longer perceived intervals. These results provide the first evidence that direct manipulations of alpha oscillations can shift perceived time in a manner consistent with a clock speed effect.

Keywords: EEG; milliseconds; tACS; time generalization; visual stimuli; young adults.