Pectin-gellan films intended for active food packaging: release kinetics of nisin and physico-mechanical characterization

J Food Sci Technol. 2021 Aug;58(8):2973-2981. doi: 10.1007/s13197-020-04800-z. Epub 2020 Sep 21.

Abstract

Films were prepared by casting 2% w/v apple pectin, 0.5% w/v low-acyl gellan and 2.2% w/v glycerol as plasticizer. Bioactive film (BF, films with 3912 International Units (IU) nisin/cm2) and control films (CF, films without nisin) were elaborated. The objective was to analyze the release kinetics of nisin from films to a food model, to determine the period of film bioactivity and potential use as antimicrobial packaging. The release of nisin from BF to a food model was determined at 5 °C and 30 °C. The release kinetics of nisin was fitted to the analytical solution of the Fick's second law for an infinite plate. The diffusion coefficients of nisin (D) were 5.22 × 10-14 and 7.36 × 10-14 m2/s for 5 °C and 30 °C, respectively. Besides, both films were characterized in their mechanical properties and gas permeabilities [oxygen (PO2) and water vapour permeability (WVP)]. The mechanical properties were reduced by the nisin incorporation, whereas PO2 was increased, and no significant effect on WVP was observed.

Keywords: Bacteriocins; Biopreservation; Diffusion; Mechanical properties; Permeability.