Facile Production of Phosphorene Nanoribbons towards Application in Lithium Metal Battery

Adv Mater. 2021 Sep;33(35):e2102083. doi: 10.1002/adma.202102083. Epub 2021 Jul 22.

Abstract

Like phosphorene, phosphorene nanoribbon (PNR) promises exotic properties but unzipping phosphorene into edge-defined PNR is non-trivial because of uncontrolled cutting of phosphorene along random directions. Here a facile electrochemical strategy to fabricate zigzag-edged PNRs in high yield (>80%) is reported. The presence of chemically active zigzag edges in PNR allows it to spontaneously react with Li to form a Li+ ion conducting Li3 P phase, which can be used as a protective layer on Li metal anode in lithium metal batteries (LMBs). PNR protective layer prevents the parasitic reaction between lithium metal and electrolyte and promotes Li+ ion diffusion kinetics, enabling homogenous Li+ ion flux and long-time cycling stability up to 1100 h at a current density of 1 mA cm-2 . LiFePO4 |PNR-Li full-cell batteries with an areal capacity of 2 mAh cm-2 , a lean electrolyte (20 µl mAh-1 ) and a negative/positive (N/P) electrodes ratio of 3.5 can be stably cycled over 100 cycles.

Keywords: black phosphorous; electrochemical exfoliation; lithium metal batteries; lithium phosphide; phosphorene nanoribbons.