Antigen-based Rapid Diagnostic Testing or Alternatives for Diagnosis of Symptomatic COVID-19: A Simulation-based Net Benefit Analysis

Epidemiology. 2021 Nov 1;32(6):811-819. doi: 10.1097/EDE.0000000000001400.

Abstract

Background: SARS-CoV-2 antigen-detection rapid diagnostic tests can diagnose COVID-19 rapidly and at low cost, but lower sensitivity compared with reverse-transcriptase polymerase chain reaction (PCR) has limited clinical adoption.

Methods: We compared antigen testing, PCR testing, and clinical judgment alone for diagnosing symptomatic COVID-19 in an outpatient setting (10% COVID-19 prevalence among the patients tested, 3-day PCR turnaround) and a hospital setting (40% prevalence, 24-hour PCR turnaround). We simulated transmission from cases and contacts, and relationships between time, viral burden, transmission, and case detection. We compared diagnostic approaches using a measure of net benefit that incorporated both clinical and public health benefits and harms of the intervention.

Results: In the outpatient setting, we estimated that using antigen testing instead of PCR to test 200 individuals could be equivalent to preventing all symptomatic transmission from one person with COVID-19 (one "transmission-equivalent"). In a hospital, net benefit analysis favored PCR and testing 25 patients with PCR instead of antigen testing achieved one transmission-equivalent of benefit. In both settings, antigen testing was preferable to PCR if PCR turnaround time exceeded 2 days. Both tests provided greater net benefit than management based on clinical judgment alone unless intervention carried minimal harm and was provided equally regardless of diagnostic approach.

Conclusions: For diagnosis of symptomatic COVID-19, we estimated that the speed of diagnosis with antigen testing is likely to outweigh its lower accuracy compared with PCR, wherever PCR turnaround time is 2 days or longer. This advantage may be even greater if antigen tests are also less expensive.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Diagnostic Techniques and Procedures
  • Diagnostic Tests, Routine
  • Humans
  • SARS-CoV-2
  • Sensitivity and Specificity