An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1

J Immunol. 2021 Aug 1;207(3):888-901. doi: 10.4049/jimmunol.2001056. Epub 2021 Jul 21.

Abstract

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphibian Proteins / genetics
  • Amphibian Proteins / metabolism*
  • Animals
  • Antiviral Agents / metabolism*
  • Anura
  • Bacterial Toxins / genetics
  • Cornea / pathology*
  • Cornea / virology
  • Female
  • HeLa Cells
  • Herpes Simplex / immunology*
  • Herpesvirus 1, Human / physiology*
  • Host-Pathogen Interactions
  • Humans
  • Mice
  • Microscopy, Electron, Transmission
  • Multiprotein Complexes / metabolism*
  • Pore Forming Cytotoxic Proteins / chemistry
  • Pore Forming Cytotoxic Proteins / genetics
  • Pore Forming Cytotoxic Proteins / metabolism*
  • Trefoil Factors / metabolism*
  • Viral Envelope / metabolism
  • Viral Envelope / ultrastructure
  • Virus Internalization
  • gamma-Crystallins / chemistry

Substances

  • Amphibian Proteins
  • Antiviral Agents
  • Bacterial Toxins
  • Multiprotein Complexes
  • Pore Forming Cytotoxic Proteins
  • Trefoil Factors
  • gamma-Crystallins
  • aerolysin