Target of rapamycin controls hyphal growth and pathogenicity through FoTIP4 in Fusarium oxysporum

Mol Plant Pathol. 2021 Oct;22(10):1239-1255. doi: 10.1111/mpp.13108. Epub 2021 Jul 20.

Abstract

Fusarium oxysporum is the causal agent of the devastating Fusarium wilt by invading and colonizing the vascular system in various plants, resulting in substantial economic losses worldwide. Target of rapamycin (TOR) is a central regulator that controls intracellular metabolism, cell growth, and stress responses in eukaryotes, but little is known about TOR signalling in F. oxysporum. In this study, we identified conserved FoTOR signalling pathway components including FoTORC1 and FoTORC2. Pharmacological assays showed that F. oxysporum is hypersensitive to rapamycin in the presence of FoFKBP12 while the deletion mutant strain ΔFofkbp12 is insensitive to rapamycin. Transcriptomic data indicated that FoTOR signalling controls multiple metabolic processes including ribosome biogenesis and cell wall-degrading enzymes (CWDEs). Genetic analysis revealed that FoTOR1 interacting protein 4 (FoTIP4) acts as a new component of FoTOR signalling to regulate hyphal growth and pathogenicity of F. oxysporum. Importantly, transcript levels of genes associated with ribosome biogenesis and CWDEs were dramatically downregulated in the ΔFotip4 mutant strain. Electrophoretic mobility shift assays showed that FoTIP4 can bind to the promoters of ribosome biogenesis- and CWDE-related genes to positively regulate the expression of these genes. These results suggest that FoTOR signalling plays central roles in regulating hyphal growth and pathogenicity of F. oxysporum and provide new insights into FoTOR1 as a target for controlling and preventing Fusarium wilt in plants.

Keywords: Fusarium oxysporum; FoTOR1 interacting protein 4; hyphal growth; pathogenicity; target of rapamycin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fusarium*
  • Plant Diseases
  • Sirolimus / pharmacology
  • Virulence

Substances

  • Sirolimus

Supplementary concepts

  • Fusarium oxysporum