Active-type starch synthase (SS) IIa from indica rice partially complements the sugary-1 phenotype in japonica rice endosperm

Plant Mol Biol. 2022 Mar;108(4-5):325-342. doi: 10.1007/s11103-021-01161-9. Epub 2021 Jul 21.

Abstract

Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.

Keywords: Amylopectin; Endosperm; Isoamylase; Phytoglycogen; Rice; Starch synthase.

MeSH terms

  • Crosses, Genetic
  • Endosperm / enzymology*
  • Gene Expression Regulation, Viral
  • Isoamylase / genetics
  • Oryza / enzymology*
  • Oryza / genetics
  • Phenotype
  • Plant Breeding
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Starch Synthase / genetics
  • Starch Synthase / metabolism*
  • Sugars / metabolism

Substances

  • Plant Proteins
  • Sugars
  • starch synthase II
  • Starch Synthase
  • Isoamylase