Vibrational and Acoustical Characteristics of Ear Pinna Simulators That Differ in Hardness

Audiol Res. 2021 Jul 1;11(3):327-334. doi: 10.3390/audiolres11030030.

Abstract

Because cartilage conduction-the transmission of sound via the aural cartilage-has different auditory pathways from well-known air and bone conduction, how the output volume in the external auditory canal is stimulated remains unknown. To develop a simulator approximating the conduction of sound in ear cartilage, the vibrations of the pinna and sound in the external auditory canal were measured using pinna simulators made of silicon rubbers of different hardness (A40, A20, A10, A5, A0) as measured by a durometer. The same procedure, as well as a current calibration method for air conduction devices, was applied to an existing pinna simulator, the Head and Torso Simulator (hardness A5). The levels for vibration acceleration and sound pressure from these pinna simulators show spectral peaks at dominant frequencies (below 1.5 kHz) for the conduction of sound in cartilage. These peaks were likely to move to lower frequencies as hardness decreases. On approaching the hardness of actual aural cartilage (A10 to A20), the simulated levels for vibration acceleration and sound pressure approximated the measurements of human ears. The adjustment of the hardness used in pinna simulators is an important factor in simulating accurately the conduction of sound in cartilage.

Keywords: cartilage conduction; head-and-torso simulator; hearing aid; pinna simulator; sound pressure level; vibration acceleration level.