[Au16Ag43H12(SPhCl2)34]5-: An Au-Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution

Inorg Chem. 2021 Aug 2;60(15):11640-11647. doi: 10.1021/acs.inorgchem.1c01624. Epub 2021 Jul 21.

Abstract

The structural determination of alloy hydride nanoclusters with high nuclearity remains challenging. We herein report the synthetic procedure and the structural elucidation of an Au-Ag alloy nanocluster with 12 hydride ligands-[Au16Ag43H12(SPhCl2)34]5-. The structure of [Au16Ag43H12(SPhCl2)34]5- comprises an Au16Ag3 kernel that is stabilized by 12 hydride ligands, 8 thiol bridges, and 6 Agm(SR)n motif units. The 12 hydride ligands in Au16Ag43 have been confirmed by both 2H NMR and ESI-MS measurements, and their positions have been theoretically evaluated, located at the interlayer between the Au16Ag3 kernel and the Ag-SR shell. The metastable [Au16Ag43H12(SPhCl2)34]5- can convert to [Au12Ag32(SPhCl2)30]4- spontaneously. Structurally, the Au16Ag3 kernel of [Au16Ag43H12(SPhCl2)34]5- could be regarded as the overlapping of two hollow Au8Ag3 cages via sharing an Ag3 line, which is in contrast to the solely icosahedral Au12 kernel of [Au12Ag32(SPhCl2)30]4-. Besides, the overall construction of Au16Ag43 or Au12Ag32 follows a complementing or overlapping assembly mode, respectively. Overall, the structural anatomy of Au16Ag43H12(SPhCl2)34 sheds some new insight into the structural evolution of metal nanoclusters.