A [3Fe-4S] cluster and tRNA-dependent aminoacyltransferase BlsK in the biosynthesis of Blasticidin S

Proc Natl Acad Sci U S A. 2021 Jul 27;118(30):e2102318118. doi: 10.1073/pnas.2102318118.

Abstract

Blasticidin S is a peptidyl nucleoside antibiotic. Its biosynthesis involves a cryptic leucylation and two leucylated intermediates, LDBS and LBS, have been found in previous studies. Leucylation has been proposed to be a new self-resistance mechanism during blasticidin S biosynthesis, and the leucyl group was found to be important for the methylation of β-amino group of the arginine side chain. However, the responsible enzyme and its associated mechanism of the leucyl transfer process remain to be elucidated. Here, we report results investigating the leucyl transfer step forming the intermediate LDBS in blasticidin biosynthesis. A hypothetical protein, BlsK, has been characterized by genetic and in vitro biochemical experiments. This enzyme catalyzes the leucyl transfer from leucyl-transfer RNA (leucyl-tRNA) to the β-amino group on the arginine side chain of DBS. Furthermore, BlsK was found to contain an iron-sulfur cluster that is necessary for activity. These findings provide an example of an iron-sulfur protein that catalyzes an aminoacyl-tRNA (aa-tRNA)-dependent amide bond formation in a natural product biosynthetic pathway.

Keywords: iron–sulfur cluster; leucyl transfer reaction; natural product; tRNA-dependent enzymes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aminoacyltransferases / genetics
  • Aminoacyltransferases / metabolism*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Biosynthetic Pathways
  • Iron-Sulfur Proteins / genetics
  • Iron-Sulfur Proteins / metabolism*
  • Nucleosides / biosynthesis
  • RNA, Transfer, Amino Acyl / genetics
  • RNA, Transfer, Amino Acyl / metabolism*
  • Streptomyces / enzymology*
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • Iron-Sulfur Proteins
  • Nucleosides
  • RNA, Transfer, Amino Acyl
  • blasticidin S
  • Aminoacyltransferases

Supplementary concepts

  • Streptomyces griseochromogenes