Additive Effects of Lithium Salts with Various Anionic Species in Poly (Methyl Methacrylate)

Molecules. 2021 Jul 5;26(13):4096. doi: 10.3390/molecules26134096.

Abstract

We report that lithium salts in lithium-ion batteries effectively modify the physical properties of poly (methyl methacrylate) (PMMA). The glass transition temperature (Tg) is an indicator of the heat resistance of amorphous polymers. The anionic species of the salts strongly affected the glass transition behavior of PMMA. We focused on the additive effects of various lithium salts, such as LiCF3SO3, LiCOOCF3, LiClO4, and LiBr, on the Tg of PMMA. The large anions of the former three salts caused them to form macroscopic aggregates that acted as fillers in the PMMA matrix and to combine the PMMA domains, increasing Tg. On the other hand, LiBr salts dispersed microscopically in the PMMA matrix at the molecular scale, leading to the linking of the PMMA chains. Thus, the addition of LiBr to PMMA increased Tg as well as the relaxation time in the range of glass to rubber transition.

Keywords: dynamic mechanical properties; lithium salts; poly (methyl methacrylate).