Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots via Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions

ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34648-34657. doi: 10.1021/acsami.1c01879. Epub 2021 Jul 19.

Abstract

Limited light absorption beyond the UV region and rapid photocarrier recombination are critical impediments for the improved photocatalytic performance of carbon quantum dots (CQDs) under visible-light irradiation. Herein, we demonstrate single-step microwave-assisted syntheses of O-CQDs (typical CQDs terminated by carboxylic and hydroxyl functional groups) from a sucrose precursor and Cl-doped CQDs (Cl-CQDs) from a sucralose precursor in short reaction times and without using obligatory strong acids for Cl doping. The doping of Cl into the CQDs is observed to widen the absorption range and facilitate an enhanced separation of photoexcited charge carriers, which is confirmed by the results of optical absorption, photothermal response, and pump-probe ultrafast transient absorption spectroscopy measurements of the O-CQDs and Cl-CQDs. The photoexcited charge carriers with their longer lifetimes in Cl-CQDs enabled the quick degradation of methylene blue dye, rapid conversion of Ag+ ions to metallic Ag nanoparticles on the CQD surfaces, and reduction of GO to a well-dispersed rGO through the photoelectron transfer reactions under visible-light irradiation. The facile Cl doping strategy, hybridization of Ag nanoparticles or rGO to CQDs, and the elevated charge separation mechanism would open up new avenues in designing CQD-based materials for futuristic applications.

Keywords: carbon quantum dots; charge carrier separation; chlorine doping; microwave-assisted synthesis; photocatalysis.