Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field

Adv Colloid Interface Sci. 2021 Aug:294:102486. doi: 10.1016/j.cis.2021.102486. Epub 2021 Jul 7.

Abstract

To develop efficient catalysts is one of the major ways to solve the energy and environmental problems. Spinel ferrites, with the general chemical formula of MFe2O4 (where M = Mg2+, Co2+, Ni2+, Zn2+, Fe2+, Mn2+, etc.), have attracted considerable attention in catalytic research. The flexible position and valence variability of metal cations endow spinel ferrites with diverse physicochemical properties, such as abundant surface active sites, high catalytic activity and easy to be modified. Meanwhile, their unique advantages in regenerating and recycling on account of the magnetic performances facilitate their practical application potential. Herein, the conventional as well as green chemistry synthesis of spinel ferrites is reviewed. Most importantly, the critical pathways to improve the catalytic performance are discussed in detail, mainly covering selective doping, site substitution, structure reversal, defect introduction and coupled composites. Furthermore, the catalytic applications of spinel ferrites and their derivative composites are exclusively reviewed, including Fenton-type catalysis, photocatalysis, electrocatalysis and photoelectro-chemical catalysis. In addition, some vital remarks, including toxicity, recovery and reuse, are also covered. Future applications of spinel ferrites are envisioned focusing on environmental and energy issues, which will be pushed by the development of precise synthesis, skilled modification and advanced characterization along with emerging theoretical calculation.

Keywords: Catalytic application; Derivative composites; Energy; Environment; Spinel ferrites.

Publication types

  • Review