Generalized Euler-Lotka equation for correlated cell divisions

Phys Rev E. 2021 Jun;103(6):L060402. doi: 10.1103/PhysRevE.103.L060402.

Abstract

Cell division times in microbial populations display significant fluctuations that impact the population growth rate in a nontrivial way. If fluctuations are uncorrelated among different cells, the population growth rate is predicted by the Euler-Lotka equation, which is a classic result in mathematical biology. However, cell division times can be significantly correlated, due to physical properties of cells that are passed through generations. In this Letter, we derive an equation remarkably similar to the Euler-Lotka equation which is valid in the presence of correlations. Our exact result is based on large deviation theory and does not require particularly strong assumptions on the underlying dynamics. We apply our theory to a phenomenological model of bacterial cell division in E. coli and to experimental data. We find that the discrepancy between the growth rate predicted by the Euler-Lotka equation and our generalized version is relatively small, but large enough to be measurable by our approach.