Lead speciation and availability affected by plants in a contaminated soil

Chemosphere. 2021 Dec:285:131468. doi: 10.1016/j.chemosphere.2021.131468. Epub 2021 Jul 9.

Abstract

Changes in lead (Pb) speciation in the rhizosphere may be plant species-dependent and dictate Pb fate and behavior in the soil-plant system. X-ray absorption near edge structure (XANES) spectroscopy can explain how these changes affect Pb availability in soils and its uptake by plants. We investigated the changes in Pb speciation and availability in the rhizosphere of eucalypt (Eucalyptus urophylla x Eucalyptus grandis), palisade grass (Urochloa brizantha cv. Marandu), and Indian mustard (Brassica juncea L.) using XANES spectroscopy. A greenhouse experiment was performed in a complete randomized design, with three plant species and a no plant control treatment. After three months, rhizosphere and bulk soil samples were collected, Pb speciation was assessed by Pb L3-edge XANES spectroscopy, and Pb concentration was determined in plant tissue. In bulk soil, we found Pb primarily as Pb-Il (Pb sorbed to illite; 48%) and lead monoxide (PbO; 36%). In the rhizosphere, Pb-Ka (Pb sorbed to kaolinite; 33-56%) and (CH₃COO)₂Pb (25-41%) were the main Pb forms, the latter suggesting Pb complexation by low molecular weight organic acids (LMWOAs). Palisade grass rhizospheric soil had a lower abundance of Pb-Ka and a higher abundance of (CH₃COO)₂Pb than eucalypt and mustard, which led to low Pb concentration in plant tissue. LMWOAs exudation followed by Pb2+ complexation is the apparent mechanism used by palisade grass to detoxify the rhizosphere and control Pb uptake. Given its low Pb uptake and potential to complex Pb in organic forms, palisade grass may be a promising species for Pb phytostabilization in contaminated soils.

Keywords: Heavy metals; Low molecular weight organic acids; Phytostabilization; Rhizosphere; XANES spectroscopy.

MeSH terms

  • Environmental Pollution
  • Lead
  • Plant Roots / chemistry
  • Random Allocation
  • Rhizosphere
  • Soil
  • Soil Pollutants* / analysis

Substances

  • Soil
  • Soil Pollutants
  • Lead