First Report of Colletotrichum cliviicola Causing Leaf Spot on Tobacco (Nicotiana tabacum) in Hunan Province of China

Plant Dis. 2021 Jul 16. doi: 10.1094/PDIS-02-21-0409-PDN. Online ahead of print.

Abstract

Tobacco (Nicotiana tabacum L.) is an annual, leafy, herb of the genus Nicotiana in the family Solanaceae. It is an important commercial crop in China. In 2020, a leaf spot disease was observed on tobacco leaves in commercial fields in the Hunan Province of China. Symptoms appeared as water-soaked, yellow-green spots, then turned dark brown, and coalesced into larger necrotic lesions, often leading to leaf wilt. Approximately 20% of the plants in a 50-ha area were infected, exhibiting symptomatic spots on 60% of these leaves. Symptomatic leaf samples were collected and cut into small pieces, sterilized with 70% ethanol for 10 s, 0.1% HgCl2 for 40s, rinsed with sterile distilled water for three times, plated on potato dextrose agar (PDA) and incubated at 26°C in the dark. Isolates with similar morphology were developed from ten samples. Fungal isolates produced densely, white to dark green, aerial mycelium. Conidia were straight, hyaline, aseptate, cylindrical, contained oil globules, and 15 to 25 µm × 3.0 to 4.0 µm (n=50). Appressoria were dark brown, irregularly shaped, 5.5 to 10.0 μm × 4.5 to 6.5 μm (n=50). These morphological characteristics were typical of Colletotrichum cliviicola (Yang et al. 2009). For molecular identification, the internal transcribed spacer (ITS) region of rDNA, actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and chitin synthase (CHS-1) genes of a representative isolate CS16-2 were amplified and sequenced using the primer pairs as described previously (Weir et al. 2012). These sequences were deposited in GenBank (GenBank Accession Nos. MW649137 for ITS, MW656181 for ACT, MW656182 for GAPDH and MW656183 for CHS-1). BLAST analysis showed that they had 99.46% to 100% identity to the corresponding sequences of C. cliviicola strains. A concatenated phylogenetic tree was generated, using the ACT, GAPDH and CHS-1 sequences of the isolate CS16-2 and other closely matching Colletotrichum species obtained from the GenBank. We found that the CS16-2 was grouped with the C. cliviicola clade with 97% bootstrap support, including the C. cliviicola strain AH1B6 (Wang et al. 2016). Pathogenicity was tested spraying 2-month-old potted tobacco plants until runoff with a conidial suspension (105 spores/ml). Leaves were mock inoculated with sterilized water. The pathogenicity tests were performed twice, with three replicate plants each. Plants were kept in humid chambers at 26°C with a 12-h photoperiod. Five days post-inoculation, the inoculated plants developed symptoms of consisting of the yellow-brown necrotic lesion resembling the symptoms that were observed in fields, while the control plants remained symptomless. C. cliviicola was re-isolated and identified by morphological and molecular methods as described above. Currently, C. cliviicola has been reported to be the causal agent of anthracnose in some plants, such as soybean (Zhou et al. 2017) and Zamioculcas zamiifolia (Barbieri et al. 2017). However, to our knowledge, this is the first report of C. cliviicola causing leaf spot on tobacco in China and even in the word. Given that the may greatly affect the yield and quality of tobacco production, growers should be prepared to manage this new disease. This work might provide further insight for disease diagnosis on tobacco as some other Colletotrichum species, such as C. fructicola (Wang et al. 2016) and C. karsti (Zhao et al. 2020), have also been responsible for anthracnose.

Keywords: Causal Agent; Crop Type; Field crops; Fungi; Pathogen detection; Subject Areas; other.