Soft Viscoelastic Particles in Contact with a Quartz Crystal Microbalance (QCM): A Frequency-Domain Lattice Boltzmann Simulation

Anal Chem. 2021 Jul 27;93(29):10229-10235. doi: 10.1021/acs.analchem.1c01612. Epub 2021 Jul 16.

Abstract

Shifts of frequency and bandwidth of a quartz crystal microbalance (QCM) in contact with a structured, viscoelastic sample have been computed with a linearized version of the lattice Boltzmann method (LBM). The algorithm operates in the frequency domain and covers viscoelasticity. The different domains are characterized by different values of the complex viscosity, η, equivalent to different values of the shear modulus, G. Stiff particles are given large |ηSph|, where |ηSph| must be less than ∼100 ηbulk with ηbulk the viscosity of the ambient liquid. Critical to the computational efficiency is a match of the LBM populations at the upper boundary of the simulation box to an analytical solution of the Stokes equation in the bulk above the box. The application example is a test of the ΔΓ/(-Δf)-extrapolation scheme, where Δf and ΔΓ are the shifts in resonance frequency and half bandwidth, respectively. For adsorbed particles, plots of ΔΓ/(-Δf) versus - Δf/n (with n the overtone order) show almost straight lines. The extrapolation of these lines to zero yields a frequency shift, which, after conversion to a thickness with the Sauerbrey equation, closely agrees with the height of the particles. Plots of Δf/n and ΔΓ/n versus n look similar to the corresponding plots obtained for viscoelastic films, where the parameters, which would usually be extracted from those plots (apparent mass and apparent compliance), depend on the geometry and the sample's viscoelasticity in a nontrivial way.