Non-flipping DNA glycosylase AlkD scans DNA without formation of a stable interrogation complex

Commun Biol. 2021 Jul 15;4(1):876. doi: 10.1038/s42003-021-02400-x.

Abstract

The multi-step base excision repair (BER) pathway is initiated by a set of enzymes, known as DNA glycosylases, able to scan DNA and detect modified bases among a vast number of normal bases. While DNA glycosylases in the BER pathway generally bend the DNA and flip damaged bases into lesion specific pockets, the HEAT-like repeat DNA glycosylase AlkD detects and excises bases without sequestering the base from the DNA helix. We show by single-molecule tracking experiments that AlkD scans DNA without forming a stable interrogation complex. This contrasts with previously studied repair enzymes that need to flip bases into lesion-recognition pockets and form stable interrogation complexes. Moreover, we show by design of a loss-of-function mutant that the bimodality in scanning observed for the structural homologue AlkF is due to a key structural differentiator between AlkD and AlkF; a positively charged β-hairpin able to protrude into the major groove of DNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • DNA Glycosylases / genetics*
  • DNA Glycosylases / metabolism
  • DNA, Bacterial / genetics*

Substances

  • Bacterial Proteins
  • DNA, Bacterial
  • DNA Glycosylases