Leakage channels enabled multi-resonant all-solid photonic bandgap fiber for effective single-mode propagation

Opt Express. 2021 Jul 5;29(14):22455-22469. doi: 10.1364/OE.430945.

Abstract

All-solid photonic bandgap fiber (AS-PBGF) has been fully demonstrated to be a promising candidate of large-mode-area fiber for its mode-dependent selectivity and spectral filtering mechanism. In the present work, the concepts of multiple-resonant coupling and leakage channels are taken into consideration simultaneously for mode area scaling of AS-PBGF. The single-mode performance and bending resistance of a modified structure, called leakage channels enabled multi-resonant AS-PBGF (LC-PBGF), are evaluated numerically. Robust single-mode transmission is guaranteed by a specially designed microstructure cladding with only four layers of germanium-doped rods. Multi-resonant cores in the inner layers and leakage channels in the outermost layer, resulting from missing rods in the microstructure cladding, are employed to generate modal dissipation of high-order modes under bent configuration. The missing germanium-doped rods in each layer are properly designed to eliminate the dependence on bending direction, leading to differential bending loss between fundamental mode and high-order-modes with high loss ratio. In addition, some typical derivative structures based on the LC-PBGF concept have also been proved to have great potential for effective single-mode operation.