Raman wavelength conversion in a multipass cell

Opt Lett. 2021 Jul 15;46(14):3380-3383. doi: 10.1364/OL.431675.

Abstract

Positively chirped femtosecond pulses at 1030 nm are wavelength-converted using spontaneous and stimulated Raman scattering in a potassium gadolinium tungstate crystal inserted inside a multipass cell. Recirculation in the cell and the Raman material allows both a high conversion efficiency and good spatial beam quality for the generated Stokes beams. The converted pulses can be compressed to sub-picosecond duration. Multipass cells could be an appealing alternative to other Raman shifter implementations in terms of thermal effects, control of the Raman cascade, and overall output beam quality.