Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors

ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34168-34177. doi: 10.1021/acsami.1c06980. Epub 2021 Jul 14.

Abstract

Flexible supercapacitors have great potential applications in wearable and portable electronics, but their practical applications were limited due to the low energy density and mechanical flexibility of solid-state electrolytes used for the construction of flexible supercapacitors. In this study, we first report the solid-state double-network (DN) hydrogel electrolytes (HEs) incorporated with Na2MoO4 redox additives. It is found that the solid-state DN HEs with Na2MoO4 redox additives exhibit high electrochemical performance, excellent mechanical properties, and fast self-recovery features. We then demonstrate novel symmetric supercapacitors (SSCs) incorporated with the solid-state Na2MoO4 DN HEs and the active carbon cloths as the electrodes. The SSCs exhibit a specific capacitance of 84 mF/cm2 at a current density of 1 mA/cm2 and an energy density of 70 μWh/cm2 at a power density of 3800 μWh/cm2. Moreover, the SSCs retain approximately 80% capacitance retention after 7000 charge/discharge cycles, which indicates that the SSCs possess excellent flexibility and stability. All of these results demonstrate that the SSCs incorporated with the solid-state Na2MoO4 DN HEs as energy-storage devices have great practical applications in wearable and portable electronics.

Keywords: cyclability; double-network hydrogels; flexibility; redox electrolytes; symmetric supercapacitors.