Impact of land use/land cover dynamics on ecosystem service value-a case from Lake Malombe, Southern Malawi

Environ Monit Assess. 2021 Jul 14;193(8):492. doi: 10.1007/s10661-021-09241-5.

Abstract

Lake Malombe ecosystem provides a vast range of services that are vital for the sustenance of the riparian communities. Understanding land use and land cover (LULC) dynamics, as well as the associated impacts on the multiple ecosystem service value (ESV), is extremely important in decision-making processes and effective implementation of an ecosystem-based management approach. This study analyzed the LULC dynamics from 1989 to 2019. The primary objective of the study was to assess its impact on ecosystem services (ES). The ESV was determined using LULC analysis and established global ESV coefficient. The LULC analysis showed a reduction in forest cover by 84.73% during the study period. Built-up, cultivated land, bare land, shrubs, and grassland increased considerably. Rapid population growth, climate change, government policy conflicts, and poverty were identified as the most important drivers of LULC dynamics. Based on ESVs estimations, the ES changes instigated by LULC dynamics in the study area result in an average loss of US$45.58 million during the study period. Within the same period, the lake fishery also recorded a net loss of US$8.63 million. The highest net loss of US$79.832 million was recorded from 1999 to 2019 due to increased loss of forest, a decrease in water bodies and marsh areas. The sensitivity analysis (CS) indicated that our estimates were relatively robust. This study findings provide a piece of empirical evidence that LULC dynamics in the Lake Malombe catchment have led to a significant loss of ESVs, with serious implications for the livelihoods of the local population.

Keywords: Ecosystem service value; Lake Malombe; Land use/land cover change; Malawi; Riparian communities.

MeSH terms

  • Conservation of Natural Resources
  • Ecosystem*
  • Environmental Monitoring
  • Lakes*
  • Malawi