Efficient Schottky Junction Construction in Metal-Organic Frameworks for Boosting H2 Production Activity

Adv Sci (Weinh). 2021 May 7;8(13):2004456. doi: 10.1002/advs.202004456. eCollection 2021 Jul.

Abstract

Manipulation of the co-catalyst plays a vital role in charge separation and reactant activation to enhance the activity of metal-organic framework-based photocatalysts. However, clarifying and controlling co-catalyst related charge transfer process and parameters are still challenging. Herein, three parameters are proposed, V transfer (the electron transfer rate from MOF to co-catalyst), D transfer (the electron transfer distance from MOF to co-catalyst), and V consume (the electron consume rate from co-catalyst to the reactant), related to Pt on UiO-66-NH2 in a photocatalytic process. These parameters can be controlled by rational manipulation of the co-catalyst via three steps: i) Compositional design by partial substitution of Pt with Pd to form PtPd alloy, ii) location control by encapsulating the PtPd alloy into UiO-66-NH2 crystals, and iii) facet selection by exposing the encapsulated PtPd alloy (100) facets. As revealed by ultrafast transient absorption spectroscopy and first-principles simulations, the new Schottky junction (PtPd (100)@UiO-66-NH2) with higher V transfer and V consume exhibits enhanced electron-hole separation and H2O activation than the traditional Pt/UiO-66-NH2 junction, thereby leading to a significant enhancement in the photoactivity.

Keywords: PtPd alloys; Schottky junctions; UiO‐66‐NH2; encapsulation; facets selection; metal‐organic frameworks.