Metabolic engineering strategies for sesquiterpene production in microorganism

Crit Rev Biotechnol. 2022 Feb;42(1):73-92. doi: 10.1080/07388551.2021.1924112. Epub 2021 Jul 13.

Abstract

Sesquiterpenes are a large variety of terpene natural products, widely existing in plants, fungi, marine organisms, insects, and microbes. Value-added sesquiterpenes are extensively used in industries such as: food, drugs, fragrances, and fuels. With an increase in market demands and the price of sesquiterpenes, the biosynthesis of sesquiterpenes by microbial fermentation methods from renewable feedstocks is acquiring increasing attention. Synthetic biology provides robust tools of sesquiterpene production in microorganisms. This review presents a summary of metabolic engineering strategies on the hosts and pathway engineering for sesquiterpene production. Advances in synthetic biology provide new strategies on the creation of desired hosts for sesquiterpene production. Especially, metabolic engineering strategies for the production of sesquiterpenes such as: amorphadiene, farnesene, bisabolene, and caryophyllene are emphasized in: Escherichia coli, Saccharomyces cerevisiae, and other microorganisms. Challenges and future perspectives of the bioprocess for translating sesquiterpene production into practical industrial work are also discussed.

Keywords: MEP pathway; MVA pathway; Sesquiterpene; metabolic engineering; microorganism; strategies.

Publication types

  • Review

MeSH terms

  • Escherichia coli / genetics
  • Metabolic Engineering*
  • Saccharomyces cerevisiae / genetics
  • Sesquiterpenes*
  • Terpenes

Substances

  • Sesquiterpenes
  • Terpenes