Vinpocetine Effect on the Juncture of Diabetes and Aging: An in-vitro study

Drug Res (Stuttg). 2021 Oct;71(8):438-447. doi: 10.1055/a-1381-6625. Epub 2021 Jul 12.

Abstract

Background: The rapid-growing population of diabetic patients and the elderly are among the direst challenges that the science of medicine is facing today. Targeting these two challenges can shed light on new means to control and ideally reverse this trend. In this experiment, Vinpocetine's effect on aged pancreatic beta-cell functions in correlation with oxidative stress was studied.

Methods: Islet cells were isolated from the pancreas of aged rats and exposed to Vinpocetine, dissolved in acetone and RPMI, for 48 h. Then, senescence-associated molecular parameters, including P16 and P38 gene expressions and β-galactosidase activity, were investigated along with diabetic and inflammation markers.

Results: Experimental results showed that Vinpocetine could significantly increase aged islets insulin secretion and also make a meaningful reduction in oxidative stress markers. This drug can also decrease expression levels of P16 and P38, the primary genes responsible for the aging pathway. TNF-α, IL-6, and NF-κB expressions were also reduced noticeably after treatment with Vinpocetine.

Conclusion: The current study showed that Vinpocetine, a derivative of the secondary plant metabolite called Vincamine, could break this vicious cycle of oxidative stress and aging by reducing oxidative stress and inflammation, thus inhibiting cellular aging.

Background: The rapid-growing population of diabetic patients and the elderly are among the direst challenges that the science of medicine is facing today. Targeting these two challenges can shed light on new means to control and ideally reverse this trend. In this experiment, Vinpocetine’s effect on aged pancreatic beta-cell functions in correlation with oxidative stress was studied.

Methods: Islet cells were isolated from the pancreas of aged rats and exposed to Vinpocetine, dissolved in acetone and RPMI, for 48 h. Then, senescence-associated molecular parameters, including P16 and P38 gene expressions and β-galactosidase activity, were investigated along with diabetic and inflammation markers.

Results: Experimental results showed that Vinpocetine could significantly increase aged islets insulin secretion and also make a meaningful reduction in oxidative stress markers. This drug can also decrease expression levels of P16 and P38, the primary genes responsible for the aging pathway. TNF-α, IL-6, and NF-κB expressions were also reduced noticeably after treatment with Vinpocetine.

Conclusion: The current study showed that Vinpocetine, a derivative of the secondary plant metabolite called Vincamine, could break this vicious cycle of oxidative stress and aging by reducing oxidative stress and inflammation, thus inhibiting cellular aging.

MeSH terms

  • Aged
  • Animals
  • Diabetes Mellitus*
  • Humans
  • NF-kappa B
  • Oxidative Stress
  • Rats
  • Vinca Alkaloids* / pharmacology

Substances

  • NF-kappa B
  • Vinca Alkaloids
  • vinpocetine