Modulation effects of S vacancy and Mo edge on the adsorption and dissociation behaviors of toxic gas (H2S, SO2) molecules on the MoS2 monolayer

Phys Chem Chem Phys. 2021 Jul 21;23(28):15364-15373. doi: 10.1039/d1cp01242h.

Abstract

This study focuses on the modulation effects of S vacancy and Mo edges on the adsorption and dissociation behaviors of toxic gases (H2S and SO2) on MoS2 by first-principles calculations. Both molecules are found to chemisorb at the S vacancy (SV) and pristine Mo edge and physisorb at the Mo edge with a 50% sulfur coverage (Mo-50 edge). Among them, SO2 has larger adsorption energy than H2S on both S vacancy and pristine Mo edge, which is related to a more electronegative O than S atom and electronically rich for the pristine Mo edge. The defective states of MoS2 induced by SV can be removed by forming Mo-S, Mo-O and Mo-H bonds upon the adsorption of SO2 and the dissociation of H2S, which is applicable in designing MoS2 based nano-electronics devices in the future. The dissociations of H2S and SO2 on pristine Mo edges are found to be more favorable than those on S vacancies due to the catalytically active Mo4+ states at edge sites. H2S is found to dissociate on the Mo-50 edge more easily than SO2. The adsorptions and dissociations of toxic gas on MoS2 with SV or Mo edges suggest MoS2 is a potential candidate in detecting and removal of toxic gases.