Curcuma longa enhances IFN-γ secretion by natural killer cells through cytokines secreted from macrophages

J Food Sci. 2021 Aug;86(8):3492-3504. doi: 10.1111/1750-3841.15821. Epub 2021 Jul 11.

Abstract

Interferon-γ (IFN-γ) regulates the human immune system. To study the interaction between macrophages and natural killer (NK) cells, we established a THP-1 macrophage-conditioned media. Among the 58 natural plant extracts tested, Curcuma longa exerted the strongest IFN-γ-enhancing effect in NK-92 cells through THP-1 macrophages. C. longa extract (CLE) enhanced IFN-γ secretion 2.3- and 4.2-fold at 50 and 100 µg/ml, respectively. Therefore, we evaluated its IFN-γ-enhancing effect in vitro. Although NK-92 cells did not produce IFN-γ following treatment with C. longa, enhanced IFN-γ secretion was observed after treatment with THP-1 macrophage-conditioned media. We hypothesized that the cytokines secreted by the CLE-treated THP-1 macrophages are responsible for stimulating NK-92 cells. Cytokine array results show upregulation of cytokines, including MIP-1α, CXCL-1, IL-1β, PAI-1, and TNF-α, in CLE-treated THP-1 macrophages. To determine the cytokines responsible for augmenting IFN-γ secretion, NK-92 cells were stimulated with MIP-1α, CXCL-1, IL-1β, or PAI-1. Enzyme-linked immunosorbent assay results show that all cytokines induced IFN-γ production, although the dose response was somewhat varied. High-performance liquid chromatography analysis of CLE revealed the concentrations of three active curcuminoids, curcumin, demethoxycurcumin, and bisdemethoxycurcumin, as 6.70%, 1.00%, and 0.95%, respectively. Their mixture (with concentrations comparable to their occurrence in CLE) exerted an effect similar to that of the whole CLE. Our findings reveal that CLE indirectly stimulated NK-92 cells to secrete IFN-γ, which is mediated by cytokines produced from THP-1 macrophages. Further, we identified three curcuminoids partly responsible for this IFN-γ-enhancing effect. Therefore, C. longa can be used as a functional food ingredient owing to its immune-boosting ability. PRACTICAL APPLICATION: This study demonstrates that CLE stimulates THP-1 macrophages to secrete cytokines, which can in turn stimulate IFN-γ production by NK-92 cells. A mixture of three curcuminoids present in the extract exerted effects similar to whole CLE, demonstrating that the curcuminoids are partly responsible for the IFN-γ-enhancing effect of C. longa. Since IFN-γ is a key regulator of human immune system, these results suggest the potential use of C. longa as an immune-boosting functional food ingredient.

MeSH terms

  • Adjuvants, Immunologic / pharmacology
  • Curcuma* / chemistry
  • Cytokines* / metabolism
  • Humans
  • Interferon-gamma / metabolism
  • Killer Cells, Natural* / drug effects
  • Killer Cells, Natural* / immunology
  • Macrophages* / drug effects
  • Plant Extracts* / pharmacology

Substances

  • Adjuvants, Immunologic
  • Cytokines
  • Plant Extracts
  • Interferon-gamma