Thermomagnetic properties of Bi2Te3 single crystal in the temperature range from 55 K to 380 K

Phys Rev Mater. 2021 Jan;5(1):10.1103/PhysRevMaterials.5.015403. doi: 10.1103/PhysRevMaterials.5.015403.

Abstract

Magneto-thermoelectric transport provides an understanding of coupled electron-hole-phonon current in topological materials and has applications in energy conversion and cooling. In this work, we study the Nernst coefficient, the magneto-Seebeck coefficient, and the magnetoresistance of single-crystalline Bi2Te3 under external magnetic field in the range of -3 T to 3 T and in the temperature range of 55 K to 380 K. Moreau's relation is employed to justify both the overall trend of the Nernst coefficient and the temperature at which the Nernst coefficient changes sign. We observe a non-linear relationship between the Nernst coefficient and the applied magnetic field in the temperature range of 55 K to 255 K. An increase in both the Nernst coefficient and the magneto-Seebeck coefficient is observed as the temperature is reduced which can be attributed to the increased mobility of the carriers at lower temperatures. First-principles density functional theory calculations were carried out to physically model the experimental data including electronic and transport properties. Simulation findings agreed with the experiments and provide a theoretical insight to justify the measurements.