Preload & Frank-Starling curves, from textbook to bedside: Clinically applicable non-additionally invasive model-based estimation in pigs

Comput Biol Med. 2021 Aug:135:104627. doi: 10.1016/j.compbiomed.2021.104627. Epub 2021 Jul 3.

Abstract

Background: Determining physiological mechanisms leading to circulatory failure can be challenging, contributing to the difficulties in delivering effective hemodynamic management in critical care. Continuous, non-additionally invasive monitoring of preload changes, and assessment of contractility from Frank-Starling curves could potentially make it much easier to diagnose and manage circulatory failure.

Method: This study combines non-additionally invasive model-based methods to estimate left ventricle end-diastolic volume (LEDV) and stroke volume (SV) during hemodynamic interventions in a pig trial (N = 6). Agreement of model-based LEDV and measured admittance catheter LEDV is assessed. Model-based LEDV and SV are used to identify response to hemodynamic interventions and create Frank-Starling curves, from which Frank-Starling contractility (FSC) is identified as the gradient.

Results: Model-based LEDV had good agreement with measured admittance catheter LEDV, with Bland-Altman median bias [limits of agreement (2.5th, 97.5th percentile)] of 2.2 ml [-13.8, 22.5]. Model LEDV and SV were used to identify non-responsive interventions with a good area under the receiver-operating characteristic (ROC) curve of 0.83. FSC was identified using model LEDV and SV with Bland-Altman median bias [limits of agreement (2.5th, 97.5th percentile)] of 0.07 [-0.68, 0.56], with FSC from admittance catheter LEDV and aortic flow probe SV used as a reference method.

Conclusions: This study provides proof-of-concept preload changes and Frank-Starling curves could be non-additionally invasively estimated for critically ill patients, which could potentially enable much clearer insight into cardiovascular function than is currently possible at the patient bedside.

Keywords: End-diastolic volume; Fluid responsiveness; Frank-starling curves; Hemodynamic monitoring; Intensive care unit; Preload.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Hemodynamics*
  • Humans
  • Stroke Volume
  • Swine