Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation

Med Phys. 2021 Sep;48(9):5130-5141. doi: 10.1002/mp.15083. Epub 2021 Aug 9.

Abstract

Purpose: In current clinical practice, noisy and artifact-ridden weekly cone beam computed tomography (CBCT) images are only used for patient setup during radiotherapy. Treatment planning is performed once at the beginning of the treatment using high-quality planning CT (pCT) images and manual contours for organs-at-risk (OARs) structures. If the quality of the weekly CBCT images can be improved while simultaneously segmenting OAR structures, this can provide critical information for adapting radiotherapy mid-treatment as well as for deriving biomarkers for treatment response.

Methods: Using a novel physics-based data augmentation strategy, we synthesize a large dataset of perfectly/inherently registered pCT and synthetic-CBCT pairs for locally advanced lung cancer patient cohort, which are then used in a multitask three-dimensional (3D) deep learning framework to simultaneously segment and translate real weekly CBCT images to high-quality pCT-like images.

Results: We compared the synthetic CT and OAR segmentations generated by the model to real pCT and manual OAR segmentations and showed promising results. The real week 1 (baseline) CBCT images which had an average mean absolute error (MAE) of 162.77 HU compared to pCT images are translated to synthetic CT images that exhibit a drastically improved average MAE of 29.31 HU and average structural similarity of 92% with the pCT images. The average DICE scores of the 3D OARs segmentations are: lungs 0.96, heart 0.88, spinal cord 0.83, and esophagus 0.66.

Conclusions: We demonstrate an approach to translate artifact-ridden CBCT images to high-quality synthetic CT images, while simultaneously generating good quality segmentation masks for different OARs. This approach could allow clinicians to adjust treatment plans using only the routine low-quality CBCT images, potentially improving patient outcomes. Our code, data, and pre-trained models will be made available via our physics-based data augmentation library, Physics-ArX, at https://github.com/nadeemlab/Physics-ArX.

Keywords: 3D CBCT-to-CT translation; OARs segmentation.

MeSH terms

  • Cone-Beam Computed Tomography
  • Humans
  • Image Processing, Computer-Assisted
  • Organs at Risk
  • Physics
  • Radiotherapy Planning, Computer-Assisted
  • Spiral Cone-Beam Computed Tomography*