Development of a multi-channel 320 GHz interferometer for high density plasma measurement in Heliotron J

Rev Sci Instrum. 2021 May 1;92(5):053519. doi: 10.1063/5.0043581.

Abstract

We report the development of a new interferometer with two stable, high-power, 320 GHz solid-state sources in Heliotron J. A heterodyne Michelson interferometer optical scheme is employed. Two solid-state oscillators are utilized as sources with a fixed frequency at 320 GHz and frequency tunable of 312-324 GHz. Quasi-optical techniques are used for beam transmission. The beam is elongated in the vertical direction with two off-axis parabolic mirrors and injected into the plasma as a sheet beam for the multi-channel measurement (>5 ch.). Passing through the plasma, the beam is reflected at a retroreflector-array installed at the vacuum chamber wall. The retroreflector-array is a bunch of retroreflector structures, which can suppress the beam refraction caused by plasma without much space inside a vacuum chamber unlike a single retroreflector and can facilitate the system design. The source, detectors, and the retroreflector-array are tested to evaluate their basic performance on a tabletop experiment.