In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques

Rev Sci Instrum. 2021 May 1;92(5):053004. doi: 10.1063/5.0050871.

Abstract

Plasmonic nanoantennas are at the core of various optical near-field scanning techniques such as tip-enhanced Raman spectroscopy as they provide the amplification and confinement of the electromagnetic field, which ultimately provides sensitivity and spatial resolution. With a cornucopia of different fabrication methods available, the actual performance of a nanoantenna is often only assessed by whether or not near-field imaging is possible, implying the complete alignment and landing procedure of the scanning probe. We present a semi-quantitative approach to assess the plasmonic enhancement of gold tips via localized surface plasmon resonance (LSPR) enhancement of intrinsic gold photoluminescence without the need for interaction with the sample. As the intensity of the plasmon at the apex decreases, a significant change in the shape of the tip signal spectrum is observed, reflecting itself as a decrease in the R2 value (fit quality) for numerical fitting with a Lorentzian, which also provides an approximation for the LSPR wavelength. Our findings suggest that the potential of a tip to perform well as an optical near field antenna may already be assessed in an early stage of the experiment.