System-on-chip upgrade of millimeter-wave imaging diagnostics for fusion plasma

Rev Sci Instrum. 2021 May 1;92(5):053522. doi: 10.1063/5.0040449.

Abstract

Monolithic, millimeter wave "system-on-chip" technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver modules each with customized W-band (75-110 GHz) monolithic microwave integrated circuit chips comprising a W-band low noise amplifier, a balanced mixer, a ×2 local oscillator (LO) frequency doubler, and two intermediate frequency amplifier stages in each module. Compared to previous quasi-optical ECEI arrays with Schottky mixer diodes mounted on planar antennas, the upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature; an internal eight times multiplier chain is used to provide LO coupling, thereby eliminating the need for quasi-optical coupling. The horn-waveguide shielding housing avoids out-of-band noise interference on each module. The upgraded ECEI system plays an important role for absolute electron temperature and fluctuation measurements for edge and core region transport physics studies. An F-band receiver chip (up to 140 GHz) is under development for additional fusion facilities with a higher toroidal magnetic field. Visualization diagnostics provide multi-scale and multi-dimensional data in plasma profile evolution. A significant aspect of imaging measurement is focusing on artificial intelligence for science applications.