FG nucleoporins feature unique patterns that distinguish them from other IDPs

Biophys J. 2021 Aug 17;120(16):3382-3391. doi: 10.1016/j.bpj.2021.06.031. Epub 2021 Jul 6.

Abstract

FG nucleoporins (FG Nups) are intrinsically disordered proteins and are the putative regulators of nucleocytoplasmic transport. They allow fast, yet selective, transport of molecules through the nuclear pore complex, but the underlying mechanism of nucleocytoplasmic transport is not yet fully discovered. As a result, FG Nups have been the subject of extensive research in the past two decades. Although most studies have been focused on analyzing the conformation and function of FG Nups from a biophysical standpoint, some recent studies have investigated the sequence-function relationship of FG Nups, with a few investigating amino acid sequences of a large number of FG Nups to understand common characteristics that might enable their function. Previously, we identified an evolutionarily conserved feature in FG Nup sequences, which are extended subsequences with low charge density, containing only positive charges, and located toward the N-terminus of FG Nups. We named these patterns longest positive like charge regions (lpLCRs). These patterns are specific to positively charged residues, and negatively charged residues do not demonstrate such a pattern. In this study, we compare FG Nups with other disordered proteins obtained from the DisProt and UniProt database in terms of presence of lpLCRs. Our results show that the lpLCRs are virtually exclusive to FG Nups and are not observed in other disordered proteins. Also, lpLCRs are what differentiate FG Nups from DisProt proteins in terms of charge distribution, meaning that excluding lpLCRs from the sequences of FG Nups make them similar to DisProt proteins in terms of charge distribution. We also previously showed the biophysical effect of lpLCRs in conformation of FG Nups. The results of this study are in line with our previous findings and imply that lpLCRs are virtually exclusive and functionally significant characteristics of FG Nups and nucleocytoplasmic transport.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Active Transport, Cell Nucleus
  • Glycine / metabolism
  • Nuclear Pore / metabolism
  • Nuclear Pore Complex Proteins* / metabolism
  • Phenylalanine* / metabolism

Substances

  • Nuclear Pore Complex Proteins
  • Phenylalanine
  • Glycine