The effect of surface modification of TiMg composite on the in-vitro degradation response, cell survival, adhesion, and proliferation

Mater Sci Eng C Mater Biol Appl. 2021 Aug:127:112259. doi: 10.1016/j.msec.2021.112259. Epub 2021 Jun 17.

Abstract

This study is aimed to evaluate the influence of mechanical surface treatment on the degradation response, cell survival, adhesion, and proliferation of a TiMg composite material. Two sets of the TiMg samples with different surface characteristics were studied: i) as-machined samples (TiMg-T) and ii) samples with a mechanically modified surface (TiMg-P). Surface roughness was determined using a confocal microscope. Degradation rates (DR) were evaluated in artificial Plasma, HBSS, and NaCl 0.9%. The cell viability was evaluated using an MTT assay. The initial cell adhesion and spreading were investigated using the direct contact assay. An xCELLigence system was employed to provide real-time cell proliferation. The focal adhesion and cell morphological changes were also examined. The DR of TiMg-P decreased by ⁓5 times compared with that of TiMg-T. Surface of the TiMg-P specimens after 72 h exposure to either HBSS or Plasma was passivated by a layer enriched with bioactive Ca/P species. The cell viability of L929 and Saos-2 after 72 h incubation for TiMg-P was 94.6% and 94.8% compared with 73.8% and 74.3% obtained for TiMg-T, respectively. The direct contact assay showed that the initial adhesion and spreading of the L929 cells incubated with TiMg-P was more pronounced compared with that of TiMg-T. The proliferation rate of Saos-2 cells incubated with TiMg-P was higher when compared with that of TiMg-T, and was almost comparable to that of the DMEM-blank between the 24 and 72 h interval. TiMg-P had a pronounced difference in the number and area of Focal Adhesions (FA) compared with that of TiMg-T. The morphology of cells incubated with TiMg-P was not altered. The results confirmed that the smooth and less strained surface of the TiMg-P samples effectively improved the in-vitro degradation response, cell survival, adhesion, and proliferation.

Keywords: Corrosion; Cytotoxicity; Focal adhesion; Surface roughness; Titanium-magnesium; xCELLigence.

MeSH terms

  • Cell Adhesion
  • Cell Proliferation
  • Cell Survival
  • Surface Properties
  • Titanium*

Substances

  • Titanium