Theoretical and Experimental Studies of KLi6TaO6 as a Li-Ion Solid Electrolyte

Inorg Chem. 2021 Jul 19;60(14):10371-10379. doi: 10.1021/acs.inorgchem.1c00902. Epub 2021 Jul 4.

Abstract

We study a hexagonal oxide KLi6TaO6 (KLTO), proposed as a Li-ion solid electrolyte, by using a recently developed screening method. First-principles calculations predict that KLTO presents a good Li-ion conductivity (σLi) and a low activation energy (Ea). Li migration is enhanced by the presence of excess Li ions in the interstitial region via a kick-out mechanism. Our experimental results demonstrate that Sn-doped KLTO presents a conductivity of 1 × 10-5 S cm-1, a σLi of 6 × 10-6 S cm-1, and a relatively low Ea of 36 kJ mol-1, which confirm the validity of the proposed screening method. Conversely, detailed analyses of the microstructure and X-ray diffraction patterns of KLTO samples indicate that a stable Li-excess condition is not achieved, therefore leaving potential improvement of the performance of KLTO as a Li-ion solid electrolyte by optimizing extrinsic doping and fabrication processes.