Reconfigurable Parametric Amplifications of Spoof Surface Plasmons

Adv Sci (Weinh). 2021 Sep;8(17):e2100795. doi: 10.1002/advs.202100795. Epub 2021 Jul 4.

Abstract

Next-generation inter-chip communication requires ultrafast ultra-compact interconnects. Designer plasmonics offers a possible route towards this goal. Further development of the plasmonic technique to circuit applications requires the direct amplification of plasmonic signals on a compact platform. However, significant signal distortions and limited operational speeds prevent the application of traditional MOS-based amplifiers to plasmonics. Up to day, the amplification of surface plasmons without phase distortion has remained a scientific challenge. In this work, the concept of parametric amplification (PA) is transplanted to the plasmonics and is realized experimentally an ultrathin reconfigurable PA using a spoof surface plasmon polariton (SSPP) waveguide integrated with tunable and nonlinear varactors. The measured parametric gain in the experiment can reach up to 9.14 dB within a short nonlinear propagation length, for example, six SSPP wavelengths, in excellent agreement with the theoretical prediction. By tuning the bias voltage of varactors, the phase-matching condition can be precisely controlled over a broad frequency band, enabling the authors to realize the multi-frequency PA of plasmonic signals. Measured phase responses confirm that the plasmonic parametric amplifier can significantly suppress the signal distortions as compared with the traditional MOS-based amplifier, which is a property highly desired for ultrafast wireless communication systems and integrated circuits.

Keywords: phase-matching conditions; reconfigurable parametric amplifier; spoof surface plasmon polaritons.