Genomics and proteomics combined analysis revealed the toxicity response of silkworm Bombyx mori to the environmental pathogen Bacillus cereus ZJ-4

Ecotoxicol Environ Saf. 2021 Oct 1:222:112467. doi: 10.1016/j.ecoenv.2021.112467. Epub 2021 Jun 30.

Abstract

Bacterial contamination has caused a major public health problem worldwide. Bacillus cereus is a conditional environmental pathogenic bacteria that can cause food poisoning. Whether environmental pathogens can cause widespread transmission in the insect kingdom is unclear. In this study, a Bacillus cereus ZJ-4 was isolated from the hospital environment of Zhenjiang City, Jiangsu Province, China. It was fatal by injection into the silkworm hemolymph. To investigated the potential toxic factors of ZJ-4 and clarified the toxicity response mechanism of silkworm by the ZJ-4 infection. Then, the whole genome of ZJ-4 was sequenced, and the immune mechanism of silkworm fat body to ZJ-4 pathogen was studied by HE pathological section and proteomics. Bacterial genome sequencing indicated that ZJ-4 had 352 drug resistance genes and 6 virulence genes. After 36 h of subcutaneous puncture with ZJ-4 suspension, the pathological changes were obviously found in HE pathological sections of fat body tissue. Comparative proteomic results indicated that differentially expressed proteins are mainly involved in stress reactions, biological regulation, and innate immunity. The qRT-PCR analysis showed that the expressions of β-GRP, Spaetzle, MyD88, Tube and Dorsal genes in Toll pathway were up-regulated, while Pell and Cactus genes were down-regulated; in the antimicrobial peptide pathway, Glv2, Lzm, Mor, and Leb3 genes were up-regulated, while attacin1 and defensin genes were down-regulated; Sod gene was up-regulated, while Cat gene was down-regulated in the antioxidant pathway; Ldh, Sdh, and Mdh genes were down-regulated in glucose metabolism pathway. These results indicated that ZJ-4 can damage the innate immune pathway of silkworm, and also affect the normal immune function of fat body cells.

Keywords: Bacillus cereus pathogen; Environmental transmission; Genomics; Innate immunity; Toxicity response.

MeSH terms

  • Animals
  • Bacillus cereus / genetics
  • Bombyx* / genetics
  • Genomics
  • Hemolymph
  • Proteomics