Disulfide reductase activity of thioredoxin-h2 imparts cold tolerance in Arabidopsis

Biochem Biophys Res Commun. 2021 Sep 3:568:124-130. doi: 10.1016/j.bbrc.2021.06.081. Epub 2021 Jun 30.

Abstract

Many thioredoxin-h (Trx-h) proteins, cytosolic isotypes of Trxs, have been functionally characterized in plants; however, the physiological function of Arabidopsis Trx-h2, which harbors two active site cysteine (Cys) residues and an N-terminal extension peptide containing a fatty acid acylation site, remains unclear. In this study, we investigated the physiological function of Trx-h2 by performing several abiotic stress treatments using trx-h1-3 knockout mutant lines, and found that the reductase function of Trx-h2 is critical for cold resistance in Arabidopsis. Plants overexpressing Trx-h2 in the trx-h2 mutant background (Trx-h2OE/trx-h2) showed strong cold tolerant phenotypes compared with Col-0 (wild type) and trx-h2 mutant plants. By contrast, Trx-h2(C/S)OE/trx-h2 plants expressing a variant Trx-h2 protein, in which both active site Cys residues were substituted by serine (Ser) residues, showed high cold sensitivity, similar to trx-h2 plants. Moreover, cold-responsive (COR) genes were highly up-regulated in Trx-h2OE/trx-h2 plants but not in trx-h2 and Trx-h2(C/S)OE/trx-h2 plants under cold conditions. These results explicitly suggest that the cytosolic Trx-h2 protein relays the external cold stress signal to downstream cold defense signaling cascades through its protein disulfide reductase function.

Keywords: Antioxidant protein; Cold signaling; Disulfide reductase; Plants; Redox regulation; Thioredoxin-h2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cold-Shock Response
  • Gene Expression Regulation, Plant
  • Oxidation-Reduction
  • Thioredoxin h / genetics
  • Thioredoxin h / metabolism*

Substances

  • Arabidopsis Proteins
  • Thioredoxin h