Excess nitrogen in the Bohai and Yellow seas, China: Distribution, trends, and source apportionment

Sci Total Environ. 2021 Nov 10:794:148702. doi: 10.1016/j.scitotenv.2021.148702. Epub 2021 Jun 25.

Abstract

The Bohai and Yellow seas are marginal seas of the western North Pacific, characterized by coastal eutrophication and populated coastlines. In this work, six survey datasets collected between 2011 and 2018 were used to investigate the excess of dissolved inorganic nitrogen (DIN) related to soluble reactive phosphorus (SRP), referred to as N*, in the Bohai and Yellow seas. High N* of more than 5 μmol kg-1 occurred mostly in the Changjiang and Yellow River plumes and/or near the Jiangsu coast. Away from these river plumes and the Jiangsu coast, however, N* usually ranged from -2.5 to 1.0 μmol kg-1. Combining our field data and previously published data, we found that N* in the Bohai and Yellow seas increased in the 1990s and 2000s, likely caused by the combined effect of atmospheric nitrogen deposition increase and the Kuroshio N* rise. In the 2010s, however, the coastal N* increases stopped. Based on a N*-budgeting approach, marine N (either from in situ decomposition of marine organic matters or from the open seas via current inputs) and non-marine N (either from riverine inputs or from local atmospheric nitrogen deposition) were distinguished. Marine N accounted for 51% ± 38% of DIN in the Bohai Sea and 67% ± 37% of DIN in the Yellow Sea. Although this is a regional study, we suggest that accumulation of atmospheric nitrogen along oceanic circulation pathways dominates the decadal evolution of coastal eutrophication. These findings and new insights may improve management of eutrophication in these two important marginal seas, and will also improve our understanding of nutrient dynamics in other marine systems.

Keywords: Atmospheric deposition; Coastal eutrophication; Marine transport; Nitrogen budget.

MeSH terms

  • China
  • Environmental Monitoring*
  • Eutrophication
  • Nitrogen* / analysis
  • Oceans and Seas
  • Rivers

Substances

  • Nitrogen