A Comprehensive Design of Six-Axis Force/Moment Sensor

Sensors (Basel). 2021 Jun 30;21(13):4498. doi: 10.3390/s21134498.

Abstract

Strain gage type six-axis force/moment (F/M) sensors have been largely studied and implemented in industrial applications by using an external data acquisition board (DAQ). The use of external DAQs will ill-affect accuracy and crosstalk due to the possibility of voltage drop through the wire length. The most recent research incorporated DAQ within a relatively small F/M sensor, but only for sensors of the capacitance and optical types. This research establishes the integration of a high-efficiency DAQ on six-axis F/M sensor with a revolutionary arrangement of 32 strain gages. The updated structural design was optimized using the sequential quadratic programming method and validated using Finite Element Analysis (FEA). A new, integrated DAQ system was designed, tested, and compared to commercial DAQ systems. The proposed six-axis F/M sensor was examined with the calibrated jig. The results show that the measurement error and crosstalk have been significantly reduced to 1.15% and 0.68%, respectively, the best published combination at this moment.

Keywords: data acquisition board; six-axis force/moment sensors; strain gage.

MeSH terms

  • Finite Element Analysis*