Carbon-Silica Composite as Adsorbent for Removal of Hazardous C.I. Basic Yellow 2 and C.I. Basic Blue 3 Dyes

Materials (Basel). 2021 Jun 11;14(12):3245. doi: 10.3390/ma14123245.

Abstract

Treatment of wastewaters containing hazardous substances such as dyes from the textile, paper, plastic and food industries is of great importance. Efficient technique for the removal of highly toxic organic dyes is adsorption. In this paper, adsorptive properties of the carbon-silica composite (C/SiO2) were evaluated for the cationic dyes C.I. Basic Blue 3 (BB3) and C.I. Basic Yellow 2 (BY2). The sorption capacities were determined as a function of temperature (924.6-1295.9 mg/g for BB3 and 716.3-733.2 mg/g for BY2 at 20-60 °C) using the batch method, and the Langmuir, Freundlich and Temkin isotherm models were applied for the equilibrium data evaluation using linear and non-linear regression. The rate of dye adsorption from the 100 mg/L solution was very fast, after 5 min. of phase contact time 98% of BB3 and 86% of BY2 was removed by C/SiO2. Presence of the anionic (SDS), cationic (CTAB) and non-ionic (Triton X-100) surfactants in the amount of 0.25 g/L caused decrease in BB3 and BY2 uptake. The electrokinetic studies, including determination of the solid surface charge density and zeta potential of the composite suspensions in single and mixed adsorbate systems, were also performed. It was shown that presence of adsorption layers changes the structure of the electrical double layer formed on the solid surface, based on the evidence of changes in ionic composition of both surface layer and the slipping plane area. The greatest differences between suspension with and without adsorbates was obtained in the mixed dye + SDS systems; the main reason for this is the formation of dye-surfactant complexes in the solution and their adsorption at the interface.

Keywords: adsorption; basic blue 3; basic yellow 2; composite; dyes removal; wastewater treatment.