Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4

Materials (Basel). 2021 Jun 22;14(13):3457. doi: 10.3390/ma14133457.

Abstract

Cu2MnSnS4 (CMTS) is acknowledged as an alternative to traditional semiconductors. The structure and microstructure of synthetic CMTS depend on, among other things, the types of sulfur sources used. Traditionally obtained CMTS mostly has a tetragonal structure. In this study, the effect of using thiourea (Tu) or Na2S as a sulfur source on the product structure was compared using hydrothermal synthesis at 190 °C for 7 days (ethylene glycol with water in the presence of poly(vinylpyrollidone) was used as a solvent). When Tu was used, CMTS precipitated in the form of concentric microspheres, 1-1.5 µm in size, consisting of hexagonal (in the cores) and tetragonal (the rims) forms. Most probably, the rapidly formed hexagonal nucleus was later surrounded by a slower-forming rim with a tetragonal structure. In contrast, when Na2S was used as a precursor, microspheres were not formed and a fine crystalline material with a homogeneous tetragonal structure was obtained. This allowed for the choice of micromorphology and product structure during synthesis.

Keywords: CMTS; Na2S; hexagonal; microspheres; tetragonal; thiourea.