Photobiomodulation with Red and Near-Infrared Light Improves Viability and Modulates Expression of Mesenchymal and Apoptotic-Related Markers in Human Gingival Fibroblasts

Materials (Basel). 2021 Jun 21;14(12):3427. doi: 10.3390/ma14123427.

Abstract

Photobiomodulation (PBM), also called low-level laser treatment (LLLT), has been considered a promising tool in periodontal treatment due to its anti-inflammatory and wound healing properties. However, photobiomodulation's effectiveness depends on a combination of parameters, such as energy density, the duration and frequency of the irradiation sessions, and wavelength, which has been shown to play a key role in laser-tissue interaction. The objective of the study was to compare the in vitro effects of two different wavelengths-635 nm and 808 nm-on the human primary gingival fibroblasts in terms of viability, oxidative stress, inflammation markers, and specific gene expression during the four treatment sessions at power and energy density widely used in dental practice (100 mW, 4 J/cm2). PBM with both 635 and 808 nm at 4 J/cm2 increased the cell number, modulated extracellular oxidative stress and inflammation markers and decreased the susceptibility of human primary gingival fibroblasts to apoptosis through the downregulation of apoptotic-related genes (P53, CASP9, BAX). Moreover, modulation of mesenchymal markers expression (CD90, CD105) can reflect the possible changes in the differentiation status of irradiated fibroblasts. The most pronounced results were observed following the third irradiation session. They should be considered for the possible optimization of existing low-level laser irradiation protocols used in periodontal therapies.

Keywords: LLLT; PBM; human gingival fibroblasts; in vitro; low-level laser treatment; photobiomodulation.