Synthesis and In Vitro Antimicrobial Evaluation of Photoactive Multi-Block Chalcone Conjugate Phthalimide and 1,8-Naphthalimide Novolacs

Polymers (Basel). 2021 Jun 3;13(11):1859. doi: 10.3390/polym13111859.

Abstract

Herein we report new multiblock chalcone conjugate phthalimide and naphthalimide functionalized copolymers with a topologically novel architecture synthesis using nucleophilic substitution and polycondensation methodology. The structures of the synthesized novolacs were elucidated on the basis of their spectroscopic analysis including FTIR, 1H NMR, and 13C NMR spectroscopy. Further, the number-average and weight-average molecular weights of the novolac polymers were determined by gel permeation chromatography (GPC). We examined the solubility of the synthesized polymers in various organic solvents including CHCl3, CH3CN, THF, H2O, CH3OH, DMSO, and DMF and found they are insoluble in both methanol and water. The novolac polymers were evaluated for their photophysical properties and microbial activities. The investigation of the antimicrobial activities of these polymers reveals significant antimicrobial activity against the pathogens E. coli, S. aureus, C. albicans, and A. niger.

Keywords: N-substituted phthalimide; antimicrobial activity; chalcone spacer; fluorescent naphthalimide; phenol-formaldehyde resins.