Influence of Natural Weather Conditions in the Long-Term Fracture Energy of Glass Fibre Reinforced Cement (GRC) Modified with Chemical Additions

Materials (Basel). 2021 Jun 17;14(12):3355. doi: 10.3390/ma14123355.

Abstract

The use of glass fibre-reinforced cement (GRC) in structural elements has been limited due to the reduction in the mechanical properties of the material with aging. Chemical additions have been used to modify the cement mortar formulation in order to minimise such loss, but no conclusive results have been obtained yet. Moreover, the application of accelerated aging methods in such modified GRC formulations still poses several uncertainties. An experimental campaign seeking to assess the reduction in the fracture energy of two GRCs manufactured with modified matrixes after five years of exposure to natural environment was performed. Furthermore, a comparison with results from the literature that used accelerated aging methods was performed. The results show that the use of the chemical additives might be capable of maintaining to a notable extent the mechanical properties of GRC after five years of natural aging. Regarding the accelerated aging method by means of immersion in hot water tanks, it seemed that the equivalences applied in previous research accurately match the degradation of the material after natural exposure to weather. Additionally, a digital image correlation analysis showed that aged GRCs seemed to distribute damage in a smaller area than young GRCs.

Keywords: GRC; aging methods; cement mortar; digital image correlation; fracture energy; glass fibres.