Comparison of Diazotrophic Composition and Distribution in the South China Sea and the Western Pacific Ocean

Biology (Basel). 2021 Jun 20;10(6):555. doi: 10.3390/biology10060555.

Abstract

The variation of diazotrophs has been elusive in multiple SCS and WPO regions due to insufficient data. Therefore, the dynamics of diazotrophic composition and distribution were investigated in this study, based on high-throughput sequencing and quantitative PCR of the nifH gene. We found that Proteobacteria dominated the diazotrophic community in the river-impacted SCS and cyanobacteria and Proteobacteria were more abundant in the ocean-dominated SCS and WPO. The qPCR analysis showed that cyanobacterial Trichodesmium was abundant in the Pearl River plume and in the SCS basin influenced by the Kuroshio intrusion, and it also thrived in the subequatorial region of the WPO. Unicellular cyanobacteria UCYN-A were mainly detected in the river-impacted area, UCYN-B was abundant in the WPO, UCYN-C had a relatively high abundance in the ocean-dominated area, and a preponderance of γ-Proteobacteria γ-24774A11 was observed in the ocean-dominated SCS and pelagic WPO. Diazotrophic communities had significant distance-decay relationships, reflecting clear biogeographic patterns in the study area. The variations of diazotrophic community structure were well explained by dissolved inorganic nitrogen, dissolved inorganic phosphate by an eigenvector spatial variable PCNM1. These results provide further information to help determine the ecological mechanism of elusive diazotrophic communities in different ocean ecosystems.

Keywords: Proteobacteria; South China Sea; Trichodesmium; Western Pacific Ocean; diazotroph; unicellular cyanobacteria.